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We study the structure factor for a large class of sequences of two elements a 
and b such that longer sequences are generated from shorter ones by a simple 
substitution rule a -~ %(a, b) and b ~ o-2(a , b),  where the a's are some sequences 
of a's and b's. Such sequences include periodic and quasiperiodic systems (e.g., 
the Fibonacei sequence), as well as systems such as the Thue-Morse sequence, 
which are neither. We show that there are values of the frequency co at which 
the structure factors of these sequences have peaks that scale with L, the size of 
the system like L ~l~o). For a given sequence a simple one- or two-dimensional 
dynamical iterative map of the variable ~o can easily be abstracted from the sub- 
stitution algorithm. The basin of attraction of a given fixed point or limit cycle 
of this map is a set of values of co at which there are peaks of the structure factor 
all of which share the same value of e. Furthermore, only those values of o) 
which are in the basin of attraction of the origin can have ct(o)) = 2. All other 
peaks will grow less rapidly with L. We show how to construct many sequences 
which, like the Thue-Morse sequence, have no L 2 peaks. Other qualitative 
features of the structure factors are presented. Our approach unifies the treat- 
ment of a large class of apparently very diverse systems. Implications for the 
band structure of these systems as well as for the analysis of sequences with 
more than two elements are discussed. 

KEY WORDS:  Quasiperiodicity; substitutional sequences; iterative maps; 
chaos; fixed points. 

S u b s t i t u t i o n a l  s e q u e n c e s  a r e  s e q u e n c e s  o f  e l e m e n t s  w h i c h  a r e  g e n e r a t e d  b y  

a s i m p l e  s u b s t i t u t i o n a l  a l g o r i t h m  a m o n g  t h e  e l e m e n t s .  I n  t h e  c a s e  o f  t w o  

e l e m e n t s  a a n d  b, t h e  a l g o r i t h m  t a k e s  t h e  f o r m  

a ~ ~l(a, b) 
b ~ a2(a, b)  (1 )  
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where the a's can be any string of a's and b's. Among the sequences so 
generated are the well-known Fibonacci sequence, for which al = ab and 
a2 = a, and the Thue-Morse  sequence, for which o-1 = ab and o- 2 = ba. The 
sequence Fn generated after n applications of the algorithm can often be 
more simply expressed as a sequence of appended F 1 and their com- 
plements Fj with j < n, a famous example being the Fibonacci sequence of 
two elements, for which Fn+ 1 ~--- F, Fn_ 1. 

Such sequences are of very broad interest. They are of significance in 
fields as diverse as cryptography, time series analysis, and the study of 
cellular automata.  In addition, there is much interest in substitutional 
sequences among those physicists who deal with quasiperiodic systems, and 
with layered materials in general (see, e.g., ref. 1). Among other things, it 
is possible to design and build artificial quasi-one-dimensional layered 
materials using, for example, molecular beam epitaxy. Many substitutional 
sequences have power spectra (i.e., th~ absolute square of the Fourier 
transform) that superficially resemble the power spectrum from a random 
sequence, even though the substitutional sequence is completely noiseless 
and deterministic. Using our method, it is easy to understand the most 
interesting features of these substitutional sequences and to see why and in 
what sense they resemble random sequences. 

Aside from telling us about the structure factor, our work also has 
implications for the band structure (i.e., the energy spectrum) of a non- 
relativistic particle moving in a bivalued potential generated by the sub- 
stitutional sequence (1). Although the band structure of such a system is 
not in general simply related to the structure factor of the potential, there 
is a relationship, and it is simple in certain limits. For  example, if the per- 
turbing potential in a tight-binding model is small, then the positions of the 
peaks 3 in the Fourier spectrum of the potential are tied to the positions of 
the gaps in the band structure. Very often, the gross nature of the band 
structure is determined largely by the symmetries of the system, and so this 
correspondence persists even for larger coupling constant. Thus, our 
approach to the structure factor will help to provide clearer qualitative 
insights into the band structure, particularly those aspects that are related 
to the symmetries of the system. 

In this paper we will present a formalism for studying the structure 
factor of iterative strings composed of two elements a and b. We will show 
that for sequences of this type the structure of the Fourier spectrum can be 
related to properties of a simple one- or two-dimensional nonlinear 

3 In this paper the word "peak" in reference to a power spectrum or Fourier transform of a 
chain of length L will mean a contribution to the intensity at frequency w which has an 
asymptotic (large-L) form C(co) L ~(~, where C is an L-independent factor. 
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iterative map of the frequency. In particular, we will show that the peaks 
in the power spectrum can be grouped into classes such that the heights of 
all peaks in a given class scale with the size of the system L as L ~(~~ with 
the same value of ~ for all members of a given class. All frequencies that 
are in the basin of attraction of a given fixed point have the same value of 
c~. Furthermore, all the frequencies that are in the basin of attraction of a 
given limit cycle are in the same class and share a common value of c~. We 
will also argue that the only peaks for which c~ = 2 (which is the usual case 
seen in periodic and quasiperiodic systems) are those that are associated 
with the fixed point at co = 0: Only those frequencies which lie in the basin 
of attraction of this (trivial) fixed point can have peaks that scale like L< 
For all other frequencies the scaling exponent must be less than 2, or else 
it is not well defined. 

These observations concerning peaks that scale like L 2 are consistent 
with the result obtained by Bombieri and Taylor (2) for a physically some- 
what different set of quasiperiodic systems. They showed that the existence 
of peaks that scale like L 2 implies the existence of a single root of absolute 
value greater than one to a characteristic equation. However, not all 
sequences with a single characteristic root of absolute value greater than 
one have structure factor peaks with c~--2, as we discuss in some detail 
below. 

Our method lets us treat a very wide variety of sequences on an equal 
footing. Periodic and quasiperiodic sequences, as well as sequences such as 
the Thue-Morse sequence, (3'4) which is neither periodic nor quasiperiodic, 
can all be analyzed using the same techniques. Moreover, using our pic- 
ture, the reasons behind the qualitatively different structure factors of these 
different kinds of systems become clear. In addition, we are able to relate 
various aspects of the structure factor of apparently very different systems 
to each other. For  instance, we find that the structure factors of the 
Thue-Morse sequence and of a simple periodic sequence have the same 
support, i.e., peaks appear in the respective power spectra at the same 
frequencies, albeit with different values of e. As a by-product of our inves- 
tigations, we are able to develop some simple rules using which we can 
determine certain general qualitative features of the structure factor of a 
sequence by inspection. In the remainder of this paper we will describe the 
relationship between the power spectrum of a sequence and the associated 
iterative map. Fuller details profusely illustrated with interesting examples 
will be presented elsewhere/s) 

Consider a sequence generated by the substitution rules (1). Sup- 
pose the initial sequence consists of a single element, either a or b. Let 
F 0 = a and Go = b. Then, after n applications of the rules (1) to the initial 
sequence Fo a sequence Fn will be generated. Similarly, n applications of the 
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substitution rules to Go will yield a sequence G.. From (1), it is clear that 
G. +1 and F. +1 can be written in terms of Gn and F. as 

G + I  = rrl(G, G.) 

Gn+l = rr2(Fn, Gn) 
(2) 

For example, the Fibonacci sequence that begins with the element a has 
the form F n + l =  FnG~, but G~+I= Fn, so that we recover the familiar form 
F.+I=F.F._I, Similarly, the Thue-Morse sequence can be written as 
F.  + ~ = F n Gn with G~ = Gn _ 1F~ _ 1. But in this case, a further simplification 
is possible: The symmetry of the substitution rules clearly indicates 
that G~ = F. ,  where the bar indicates the complement, which means inter- 
changing a ~ b. Thus, for the Thue-Morse case, F .+ 1= F.Fn, 

Now define a function F.(x) for integer x between 1 and L, which 
takes on two possible numerical values (e.g., + 1), depending on whether 
the xth element in the string Fn is a or b. Consider the Fourier transforms 
fn(co) and g.(co) of the sequences F.  and Gn, respectively defined by 

L 
fn(co)  = E e2~zic~ 

x = l  

and similarly for gn(co). Here L is the length of the nth-order string (e.g., 
for the Thue-Morse case, L=2" ) .  Since the ai are strings of their 
arguments, it is not difficult to see that the Fourier t ransformsf.+ l(co) and 
gn+l(co) can be expressed in terms of f.(co) and g.(co) in the following 
form: 

[- t . . j (co)]i= [-M.(co)]ij [-t.(co)]j (3) 

where the vector tn(co)= (f.(co), g.(co)), and M is a two-by-two matrix. 
The elements of M have a very specific form. Each element is just a sum 
of phases of the form exp[2rci(kp. + lq~) co], where pn is length of the string 
Fn, qn is the length of the string Gn, and k and l are integers, For example, 
for the Fibonacci sequence, 

Mn(co) = 111 exp(20iPn co) ] (4) 

while for the sequence defined by a--* aba and b--* ba, 

F1 +expE2rci(pn+q,,)co] exp(2?ipnco)l 
Mn(co) = 1_ exp(27ziq.co) ~ (5) 
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To understand how the sizes of the peaks in the power spectrum depend 
on the length of the chain, we note first that since there are, in general, two 
coupled sequences of length p~ and q~, the matrices M,(co) can be written 
in the following form, in which all the n dependence is carried by the 
arguments of the matrices: 

Mn(o ) --= M(O~) (6) 

with 

O~ = (pnco, q~co) (7) 

Furthermore, Mj(co)= M ( O j ) =  M(Op mod 1), so that if we define f~j = Oj 
mod 1 (by which we mean that mod 1 applies to each component of the 
vector), then, using Eqs. (3) and (6), we can write the Fourier transform of 
the nth iterate in the matrix product form 

[t,(o))]i= M(flj) ik [t~176 (8) 

Many of the properties of the power spectra (or structure factors) can 
be understood by studying the j dependence of ~j .  It is easy to show that 

~'ln+l=AE~,,]=M(O).~'~n m o d l ,  0~<I~n< 1 (9) 

A is a nonlinear operator which is independent of n and depends on the 
substitution rules. Its action consists of multiplication by M(0) followed by 
taking ~n + 1 rood 1 in each of its components. 4 

Equation (9) defines a two-dimensional nonlinear iterative map from 
which many of the features of the power spectra can be gleaned. If al and 
a2 both contain the same number of elements, then the two-dimensional 
map is degenerate and reduces to a one-dimensional map. For pedagogical 
purposes, it is simplest to consider such an equal-length case and study the 
resulting one-dimensional map, and in the ensuing discussion we shall 
often do that. Most of the statements made in that context apply (with 
obvious modification) to the two-dimensional maps as well. (5) 

For  the cases in which aa and a2 are of equal length, (9) reduces to 

co.+ I =R~o. mod 1 (10) 

where R is the length of ~r 1 and of ~r 2. In the Thue-Morse case, for exam- 
ple, R = 2. 

4 This procedure for defining A is possible only because the elements of the matrix M(O) are 
all integers. See ref. 5 for further details. 
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Consider now tn(co) for large n. It  is useful to distinguish among three 
qualitatively different behaviors for the iterates ~n : asymptotic fixed point 
behavior, limit cycle behavior, and "chaotic" behavior. These different 
behaviors will be associated with different behaviors for the peaks in the 
power spectra of the associated sequence. Recall that by a peak in the 
power spectrum at a frequency co we mean a contribution to the intensity 
which has an asymptotic form C(co)L ~(~3, where C is an L-independent 
amplitude. We will see that values of co for which there is a well-defined 
exponent e are those associated with the fixed point and limit-cycle 
behavior of the map (9). Values of co which lie in the basin of attraction 
of an aperiodic or chaotic attractor do not have simple scaling peaks in the 
structure factor. 

First, consider a fixed point ~ *  of the map (9). From (8), it is clear 
that for all values of co such that an associated ~n lies in the basin of 
attraction of the fixed point, the power spectra [[tn(co)]i[  2 will generically 
contain a peak which scales asymptotically with the size of the system L as 
L ~(~'~ with the same value of the c~ for all such co.5 This is because the ~ ,  
will eventually be arbitrarily close to ~ * ,  so that for large n most of the 
factors of M in (8) will be evaluated at or very near the fixed point. (In 
fact, in the examples we have studied, the fixed point basins of attraction 
are discrete sets of points, and the most important  power spectrum peaks 
are associated with values of co that reach their fixed points in a finite num- 
ber of iterations. See below for more details.) Generically, the asymptotic 
behavior of the power spectrum will be dominated by the largest eigenvalue 
of the matrix M in Eq. (8), evaluated at ~,*. If 2 is the largest eigenvalue, 
and if the length of the sequence grows by a factor of R with each iteration, 
then it is easy to see that 

c~(co) = 2 In 12(~,*)1/ln R (11) 

If ~1 and a2 are of equal length (such as in the Thue Morse problem), then 
Eq. (8) can be simplified to a nonmatrix form. In such a case, ~ is given 
simply by e(co)=ln  [M(f2*)[Z/ln R. 

The second type of behavior which the ~,, can express is limit cycle 
behavior. The frequencies which lie in the basin of attraction of a k-cycle 
(including of course the k stopover points) will have peaks in the power 

s of course, for a given sequence generated from a given zeroth-order chain, the values of ~o 
at which there are scaling peaks in the structure factor may depend on the zeroth-order 
chain. In the context of the two-dimensional map, this just reflects the fact that the starting 
value ~0 lies on some line in the two-dimensional plane determined by the form of the 
zeroth-order chain. In general, only a subset of the entire basin of attraction (in the f~ plane) 
of some fixed point or limit cycle may be associated with a sequence generated from a given 
zeroth-order chain. 
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spectrum all of which asymptotically grow with the same exponent. It  is 
easy to see that this is so by considering the kth iterate M Ekl of the matrix 
M. Any point ~ ,  which is a stopover point of a k-cycle will be a fixed point 
with respect to M Ekl. Thus, after substituting M Ekl for M in Eq. (8), we can 
apply the fixed point discussion presented above almost without change to 
this case also. It is clear that the form of M Ekl is the same for any ~ ,  in 
the limit cycle, and so all stopovers of a given limit cycle share the same 
c~(co). Similarly, the co's associated with the basin of attraction of the limit 
cycle will have the same asymptotic c~(co) as the elements of the limit cycle. 
If, for simplicity, we again consider those cases in which the matrix equa- 
tion can be reduced to a simple scalar form, then it is easy to show that 
c~(co) = In IMEI'~I2/(k in R). 

The other generic type of behavior the ~n can display is chaotic or 
aperiodic behavior, by which we mean that the sequence of f~'s does not 
repeat in a finite number of iterates. In general there will not be a well- 
defined c~(co) associated with this kind of behavior. For these values of co 
the asymptotic behavior of the power spectrum will generally not be that 
of a simple power law. 6 

To illustrate our procedure, let us turn to some simple examples. First, 
consider the well-studied Fibonacci sequence. In this case there is only one 
fixed point of the two-dimensional map (9), which is at the origin, ~ = 0. 
It is easy to see that all the frequencies associated with points in the basin 
of attraction of this fixed point at the origin have power spectrum peaks 
which scale with the size of the system as L2; i.e., for these co's, ~(co)= 2. 
Furthermore, it can be shown (with some tomentose algebra) (2's) that there 
are no other co's for which the power spectrum has peaks which scale like 
L 2. Thus, the usual power spectrum peaks of the Fibonacci lattice are those 
associated with the basin of attraction of the fixed point at the origin. 

In fact, this is a general property of these substitutional sequences: It 
can be shown (2,s) that for any sequences generated by expressions of the 
form (1), all the peaks that scale with ~ = 2  are located at values of co 
which are associated with O's which lie in the basin of attraction of the 
fixed point at the origin. (For a closely related class of systems, Bombieri 
and Taylor (2) also showed that a necessary, but not sufficient condition for 
this scenario is the existence of a single characteristic root of absolute value 
greater than one.) We emphasize that this result applies not only to the 

6 However, for finite-length sequences these aperiodic points may, within the resolution of the 
structure factor, be degenerate with a nearby (in ~o) scaling peak. Furthermore, although for 
any finite number of iterations ~(co) is not defined, insofar as there is no systematic L 
dependence of the power at a chaotic value of co, it may be said that c~(co) is zero on average. 
See ref. 4 for more details. 
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standard quasiperiodic sequences which can be produced by (1), but also 
to other more general types of sequences that do not naturally fall into this 
category, but which are generated by (1). 

In addition to these L 2 peaks, there are other peaks, associated with 
limit cycles of the map (9), but they grow less rapidly with L, and thus 
diminish relative to the primary L 2 peaks in the infinite-volume limit. Thus, 
for such substitutional sequences, and for the much studied quasiperiodic 
sequences in particular, there is an enormous amount of subsidiary struc- 
ture associated with the limit cycles of the maps (9) which is of significance 
for finite-size systems. 

Among the other, nonquasiperiodic sequences which can be generated 
by the rules (1) is the very interesting Thue-Morse lattice. ~3'4) To under- 
stand further the potential of our analysis, it is useful to quickly review 
some of the properties of that system. In particular, it will be illuminating 
to compare the Thue-Morse sequence with an ordinary periodic sequence 
with period 2. As stated earlier, the Thue-Morse sequence is determined by 
(1) with 0-1=ab and 0-2=ba, while the ordinary period-2 sequence is 
defined by 0-1 =ab and 0- 2 =ab. The map (10) associated with both these 
systems is the same and is shown in Fig. 1. It is clear that the fixed point 
at (2 = 0 has a nonnull basin of attraction in these cases. The structure 
factor of the periodic system contains the usual L 2 peak associated with 
period 2. On the other hand, the structure factor of the Thue-Morse system 

0 - 17z 
O..J n 

Fig. 1. The iterative map, Eqs. (9) and (10), for the Thue-Morse  and period-2 simple peri- 
odic sequences. The line ~o,+ 1 = co, is also shown. Some of the points in the basin of attraction 
of the fixed point at ~o = 0 are indicated. Their route to the fixed point under the iteration (10) 
is shown by the arrows. The numbers in parentheses next to the points indicate how many 
iterations are necessary to reach the fixed point. 
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has no spectral peaks that grow like L 2. In the light of our previous 
statements, how can we understand this difference? 

According to our earlier discussion, since the map of Fig. 1 is the same 
for both cases, then the values of co for which there may be peaks that scale 
like L 2 is the same. Furthermore, the matrix M is very similar in the two 
cases, being 

(F 1 exp(2~ip,,co)~ 
Thue-Morse  

~Lexp(2~ip,,co) 1 J 
M,(co)=  I F  1 exp(2~ip,co)] (12) 

k[1 exp(2rcipn co)J periodic 

It is clear that for co = 0 the matrices are identical, and so are their eigen- 
values. In this case, the largest eigenvalue at co=0  is 2, corresponding, 
according to Eq. (11), to an L 2 peak at the origin. For  general a and b 
there will be an L 2 peak at co = 0 in both these cases. This peak just counts 
the average value of the elements in the sequence which is the same in both 
cases. (Of course, if b = - a ,  then the coefficient of this peak will be zero, 
since zero will be the average value of the elements.) Now consider other 
values of co that lie in the basin of attraction of co = 0. Look first at co = 1/2, 
which is one iteration away from co = 0. Multiplying M(0) .  M(1/2) for the 
periodic case gives a result proportional  to the identity matrix, while for 
the Thue-Morse  case it gives a null matrix. Thus, in the Thue-Morse  
system the final two iterates to the fixed point are orthogonal. Since every 
co in the basin of attraction of zero must pass through co = 1/2 on the way 
to co = 0, this orthogonality effectively sets the coefficient of every would-be 
L 2 peak to zero. For the periodic case, on the other hand, there is a peak 
at co = 1/2. However, the matrices at co = 1/4 and 3/4 are orthogonal to 
M(1/2), so that the coefficients of the L 2 peaks at the other values of co in 
the basin of attraction of co = 0 are all zero. This is the most striking dif- 
ference between the Thue-Morse  sequence with its bizarre structure and 
the ordinary periodic sequence: The support over co for spectral peaks that 
scale like L 2 is the same in both cases, but because of an altered minus 
sign, the coefficient of all the L 2 peaks is zero in the Thue-Morse  case. 7 

We can easily deduce some other interesting properties of the 
Thue-Morse  and periodic lattices from our approach. First, since the map 
in Fig. 1 is the same for both cases, the support for spectral peaks in the 
structure factor is the same in both cases. What  is different between the two 

7 Notice that both the Thue-Morse  and periodic systems have a single characteristic root of 
absolute value greater than one, yet there are no L 2 peaks in the Thue-Morse  system. 
Although Bombieri and Taylor, (21 correctly conclude that L 2 peaks require a single charac~ 
teristic root of absolute value greater than one, such a condition is not sufficient to ensure 
the existence of L 2 peaks. This has also been noted independently by Aubry et al/61 
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is the set of matrix eigenvalues associated with the various limit cycles of 
the map. In the Thue-Morse case, these eigenvalues give rise to nontrivial 
values of the exponents c~(co). Moreover, because of the absence of L 2 
peaks, a set of peaks associated with a period-two limit cycle of Fig. 1 and 
for which e(co)=ln 3/ln 2 are the most significant peaks in the large-L 
limit. (These include the dominant peak at co = 1/3.) On the other hand, in 
the periodic case, these peaks as well as those associated with other limit 
cycles of the map in Fig. 1 are merely the finite-size corrections to the 
infinite-L structure factor for the simple periodic system. On the basis of a 
simple physical argument, (5) we expect all these peaks (for all limit cycles) 
to have e(co) -- 0. Due to a remarkable trigonometric identity, this is indeed 
the case. Thus, the persistent finite-size corrections of the structure factor 
in the periodic case occur at those values of co (and only those values of 
co) for which there are peaks in the Thue-Morse structure factor. 

A number of other intriguing general properties of the structure factors 
of substitutional sequences should be mentioned here. They will be 
explicitly demonstrated in a subsequent publication. (5) First, it is possible 
to construct many sequences which, like the Thue-Morse sequence, have 
no peaks that scale like L 2 (except possibly for a trivial peak at co = 0). 
Consider a sequence of the form 

Fn + ~ = Z'(Ffi Fj), j = l  ..... n (13) 

where _r is some string of the F's and Ps.  If for every j for which there is 
at least one Fj (Fj) in the string there is also at least one F s (Fj), then the 
sequence will have no nontrivial L 2 peaks. An example is the sequence 
F n + l  = F,F, Fn, which is generated by the rules 0" 1 = abb and a2 = baa. The 
mechanism by which this occurs is very similar to that of the Thue-Morse 
case. Second, the formalism presented here for sequences with two elements 
can easily be generalized to substitutional sequences containing any num- 
ber of distinct elements. In particular, the structure factor of substitutional 
sequences with k elements is related to the behavior of a k-dimensional 
iterative map in a way similar to that which we have described here for the 
k = 2  case. Finally, for those sequences for which a~ and 0"2 are each a 
k-string (e.g., the Thue-Morse or periodic case in which both a's are two- 
strings, but not the Fibonacci case), each action of the map, Eq. (9), can 
be directly related to an operator which shifts the decimal point one place 
to the right in a base-k representation of the original frequency co. 

In this paper we have considered the structure factors for a large class 
of substitutional sequences which encompass a very diverse set of objects, 
including periodic and quasiperiodic systems, as well as other sequences 
with a more complex structure. The structure factors for all these systems, 
although apparently very different, can all be very simply treated in the 
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same unified picture. We have shown that the peaks in the structure factor 
of such a sequence can be grouped into classes such that all members of a 
given class scale with L, the size of the system, with the same exponent cc 
The values of co at which there are peaks belonging to a given class can be 
determined by a simple iterative map that can easily be abstracted from the 
algorithm of the substitutional sequence. All those (o's that lie in the basin 
of attraction of the same fixed point or limit cycle of the map will have 
peaks in the structure factor that scale with the same value of c~. We further 
indicated how to calculate c~ explicitly. Moreover, the only peaks that scale 
with c~ = 2 (the usual situation of peaks that survive in the infinite-volume 
limit) are associated with o ' s  that lie in the basin of attraction of the fixed 
point at zero. All other peaks will grow less rapidly with L for large L. In 
addition, using our approach, we were able to abstract a number of other 
useful characteristics of the structure factors, including simple sufficient 
conditions on the substitutional algorithm such that the structure factor is 
guaranteed to have no peaks that grow proportional  to L 2. 

In addition to its intrinsic theoretical interest, our picture should help 
to unify and clarify a number  of important  aspects of these unusual sequen- 
ces, and in particular should be a very useful tool in helping to design 
artificial quasi-one-dimensional materials with specific structural and 
electronic properties. 
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